ARO with Nvidia GPU Workloads
This content is authored by Red Hat experts, but has not yet been tested on every supported configuration.
ARO guide to running Nvidia GPU workloads.
Prerequisites
- oc cli
- jq, moreutils, and gettext package
- ARO 4.10
If you need to install an ARO cluster, please read our ARO Quick start guide . Please be sure if you’re installing or using an existing ARO cluster that it is 4.10.x or higher.
As of OpenShift 4.10, it is no longer necessary to set up entitlements to use the nVidia Operator. This has greatly simplified the setup of the cluster for GPU workloads.
Linux:
sudo dnf install jq moreutils gettext
MacOS
brew install jq moreutils gettext
Helm Prerequisites
If you plan to use Helm to deploy the GPU operator, you will need do the following
Add the MOBB chart repository to your Helm
helm repo add mobb https://rh-mobb.github.io/helm-charts/
Update your repositories
helm repo update
GPU Quota
All GPU quotas in Azure are 0 by default. You will need to login to the azure portal and request GPU quota. There is a lot of competition for GPU workers, so you may have to provision an ARO cluster in a region where you can actually reserve GPU. ARO supports the following GPU workers:
- NC4as T4 v3
- NC6s v3
- NC8as T4 v3
- NC12s v3
- NC16as T4 v3
- NC24s v3
- NC24rs v3
- NC64as T4 v3
Please remember that when you request quota that Azure is per core. To request a single NC4as T4 v3 node, you will need to request quota in groups of 4. If you wish to request an NC16as T4 v3 you will need to request quota of 16.
Login to azure
Login to portal.azure.com , type “quotas” in search by, click on Compute and in the search box type “NCAsv3_T4”. Select the region your cluster is in (select checkbox) and then click Request quota increase and ask for quota (I chose 8 so i can build two demo clusters of NC4as T4s).
Configure quota
Log in to your ARO cluster
Login to OpenShift - we’ll use the kubeadmin account here but you can login with your user account as long as you have cluster-admin.
oc login <apiserver> -u kubeadmin -p <kubeadminpass>
Pull secret (Conditional)
We’ll update our pull secret to make sure that we can install operators as well as connect to cloud.redhat.com.
If you have already re-created a full pull secret with cloud.redhat.com enabled you can skip this step
Using Helm
Before Deploying the chart you need it to adopt the existing pull secret
kubectl -n openshift-config annotate secret \ pull-secret meta.helm.sh/release-name=pull-secret kubectl -n openshift-config annotate secret \ pull-secret meta.helm.sh/release-namespace=openshift-config kubectl -n openshift-config label secret \ pull-secret app.kubernetes.io/managed-by=Helm
Download your new pull secret from https://console.redhat.com/openshift/downloads -> Tokens -> Pull secret and use it to update create the pull secret in your cluster.
Update the pull secret
This chart will merge the in-cluster pull secret with the new pull secret.
helm upgrade --install pull-secret mobb/aro-pull-secret \ -n openshift-config --set-file pullSecret=$HOME/Downloads/pull-secret.txt
Enable Operator Hub
oc patch configs.samples.operator.openshift.io cluster --type=merge \ -p='{"spec":{"managementState":"Managed"}}' oc patch operatorhub cluster --type=merge \ -p='{"spec":{"sources":[ {"name":"redhat-operators","disabled":false}, {"name":"certified-operators","disabled":false}, {"name":"community-operators","disabled":false}, {"name":"redhat-marketplace","disabled":false} ]}}'
Skip to GPU Machine Set
Manually
Log into cloud.redhat.com
Browse to https://cloud.redhat.com/openshift/install/azure/aro-provisioned
click the Download pull secret button and save it as pull-secret.txt
The following steps will need to be ran in the same working directory as your pull-secret.txt
Export existing pull secret
oc get secret pull-secret -n openshift-config -o json | jq -r '.data.".dockerconfigjson"' | base64 --decode > export-pull.json
Merge downloaded pull secret with system pull secret to add cloud.redhat.com
jq -s '.[0] * .[1]' export-pull.json pull-secret.txt | tr -d "\n\r" > new-pull-secret.json
Upload new secret file
oc set data secret/pull-secret -n openshift-config --from-file=.dockerconfigjson=new-pull-secret.json
You may need to wait for about ~1hr for everything to sync up with cloud.redhat.com.
Delete secrets
rm pull-secret.txt export-pull.json new-pull-secret.json
GPU Machine Set
ARO still uses Kubernetes Machinsets to create a machine set. I’m going to export the first machine set in my cluster (az 1) and use that as a template to build a single GPU machine in southcentralus region 1.
Helm
Create a new machine-set (replicas of 1), see the Chart’s values file for configuration options
helm upgrade --install -n openshift-machine-api \ gpu mobb/aro-gpu
Switch to the proper namespace (project):
oc project openshift-machine-api
Wait for the new GPU nodes to be available
watch oc get machines
Skip to Install Nvidia GPU Operator
Manually
View existing machine sets
For ease of set up, I’m going to grab the first machine set and use that as the one I will clone to create our GPU machine set.
MACHINESET=$(oc get machineset -n openshift-machine-api -o=jsonpath='{.items[0]}' | jq -r '[.metadata.name] | @tsv')
Save a copy of example machine set
oc get machineset -n openshift-machine-api $MACHINESET -o json > gpu_machineset.json
Change the .metadata.name field to a new unique name
I’m going to create a unique name for this single node machine set that shows nvidia-worker-
that follows a similar pattern as all the other machine sets. jq '.metadata.name = "nvidia-worker-southcentralus1"' gpu_machineset.json| sponge gpu_machineset.json
Ensure spec.replicas matches the desired replica count for the MachineSet
jq '.spec.replicas = 1' gpu_machineset.json| sponge gpu_machineset.json
Change the .spec.selector.matchLabels.machine.openshift.io/cluster-api-machineset field to match the .metadata.name field
jq '.spec.selector.matchLabels."machine.openshift.io/cluster-api-machineset" = "nvidia-worker-southcentralus1"' gpu_machineset.json| sponge gpu_machineset.json
Change the .spec.template.metadata.labels.machine.openshift.io/cluster-api-machineset to match the .metadata.name field
jq '.spec.template.metadata.labels."machine.openshift.io/cluster-api-machineset" = "nvidia-worker-southcentralus1"' gpu_machineset.json| sponge gpu_machineset.json
Change the spec.template.spec.providerSpec.value.vmSize to match the desired GPU instance type from Azure.
The machine we’re using is Standard_NC4as_T4_v3.
jq '.spec.template.spec.providerSpec.value.vmSize = "Standard_NC4as_T4_v3"' gpu_machineset.json | sponge gpu_machineset.json
Change the spec.template.spec.providerSpec.value.zone to match the desired zone from Azure
jq '.spec.template.spec.providerSpec.value.zone = "1"' gpu_machineset.json | sponge gpu_machineset.json
Delete the .status section of the yaml file
jq 'del(.status)' gpu_machineset.json | sponge gpu_machineset.json
Verify the other data in the yaml file.
Create GPU machine set
These steps will create the new GPU machine. It may take 10-15 minutes to provision a new GPU machine. If this step fails, please login to the azure portal and ensure you didn’t run across availability issues. You can go “Virtual Machines” and search for the worker name you created above to see the status of VMs.
Create GPU Machine set
oc create -f gpu_machineset.json
This command will take a few minutes to complete.
Verify GPU machine set
Machines should be getting deployed. You can view the status of the machine set with the following commands
oc get machineset -n openshift-machine-api oc get machine -n openshift-machine-api
Once the machines are provisioned, which could take 5-15 minutes, machines will show as nodes in the node list.
oc get nodes
You should see a node with the “nvidia-worker-southcentralus1” name it we created earlier.
Install Nvidia GPU Operator
This will create the nvidia-gpu-operator name space, set up the operator group and install the Nvidia GPU Operator.
Helm
Create namespaces
oc create namespace openshift-nfd oc create namespace nvidia-gpu-operator
Use the
mobb/operatorhub
chart to deploy the needed operatorshelm upgrade -n nvidia-gpu-operator nvidia-gpu-operator \ mobb/operatorhub --install \ --values https://raw.githubusercontent.com/rh-mobb/helm-charts/main/charts/nvidia-gpu/files/operatorhub.yaml
Wait until the two operators are running
watch kubectl get pods -n openshift-nfd
NAME READY STATUS RESTARTS AGE nfd-controller-manager-7b66c67bd9-rk98w 2/2 Running 0 47s
watch oc get pods -n nvidia-gpu-operator
NAME READY STATUS RESTARTS AGE gpu-operator-5d8cb7dd5f-c4ljk 1/1 Running 0 87s
Install the Nvidia GPU Operator chart
helm upgrade --install -n nvidia-gpu-operator nvidia-gpu \ mobb/nvidia-gpu --disable-openapi-validation
Skip to Validate GPU
Manually
Create Nvidia namespace
cat <<EOF | oc apply -f - apiVersion: v1 kind: Namespace metadata: name: nvidia-gpu-operator EOF
Create Operator Group
cat <<EOF | oc apply -f - apiVersion: operators.coreos.com/v1 kind: OperatorGroup metadata: name: nvidia-gpu-operator-group namespace: nvidia-gpu-operator spec: targetNamespaces: - nvidia-gpu-operator EOF
Get latest nvidia channel
CHANNEL=$(oc get packagemanifest gpu-operator-certified -n openshift-marketplace -o jsonpath='{.status.defaultChannel}')
If your cluster was created without providing the pull secret, the cluster won’t include samples or operators from Red Hat or from certified partners. This will result in the following error message:
Error from server (NotFound): packagemanifests.packages.operators.coreos.com “gpu-operator-certified” not found.
To add your Red Hat pull secret on an Azure Red Hat OpenShift cluster, follow this guidance .
Get latest nvidia package
PACKAGE=$(oc get packagemanifests/gpu-operator-certified -n openshift-marketplace -ojson | jq -r '.status.channels[] | select(.name == "'$CHANNEL'") | .currentCSV')
Create Subscription
envsubst <<EOF | oc apply -f - apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: gpu-operator-certified namespace: nvidia-gpu-operator spec: channel: "$CHANNEL" installPlanApproval: Automatic name: gpu-operator-certified source: certified-operators sourceNamespace: openshift-marketplace startingCSV: "$PACKAGE" EOF
Wait for Operator to finish installing
Don’t proceed until you have verified that the operator has finished installing. It’s also a good point to ensure that your GPU worker is online.
Install Node Feature Discovery Operator
The node feature discovery operator will discover the GPU on your nodes and appropriately label the nodes so you can target them for workloads. We’ll install the NFD operator into the opneshift-ndf namespace and create the “subscription” which is the configuration for NFD.
Official Documentation for Installing Node Feature Discovery Operator
Set up Name Space
cat <<EOF | oc apply -f - apiVersion: v1 kind: Namespace metadata: name: openshift-nfd EOF
Create OperatorGroup
cat <<EOF | oc apply -f - apiVersion: operators.coreos.com/v1 kind: OperatorGroup metadata: generateName: openshift-nfd- name: openshift-nfd namespace: openshift-nfd EOF
Create Subscription
cat <<EOF | oc apply -f - apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: nfd namespace: openshift-nfd spec: channel: "stable" installPlanApproval: Automatic name: nfd source: redhat-operators sourceNamespace: openshift-marketplace EOF
Wait for Node Feature discovery to complete installation
You can login to your openshift console and view operators or simply wait a few minutes. The next step will error until the operator has finished installing.
Create NFD Instance
cat <<EOF | oc apply -f - kind: NodeFeatureDiscovery apiVersion: nfd.openshift.io/v1 metadata: name: nfd-instance namespace: openshift-nfd spec: customConfig: configData: | # - name: "more.kernel.features" # matchOn: # - loadedKMod: ["example_kmod3"] # - name: "more.features.by.nodename" # value: customValue # matchOn: # - nodename: ["special-.*-node-.*"] operand: image: >- registry.redhat.io/openshift4/ose-node-feature-discovery@sha256:07658ef3df4b264b02396e67af813a52ba416b47ab6e1d2d08025a350ccd2b7b servicePort: 12000 workerConfig: configData: | core: # labelWhiteList: # noPublish: false sleepInterval: 60s # sources: [all] # klog: # addDirHeader: false # alsologtostderr: false # logBacktraceAt: # logtostderr: true # skipHeaders: false # stderrthreshold: 2 # v: 0 # vmodule: ## NOTE: the following options are not dynamically run-time ## configurable and require a nfd-worker restart to take effect ## after being changed # logDir: # logFile: # logFileMaxSize: 1800 # skipLogHeaders: false sources: # cpu: # cpuid: ## NOTE: whitelist has priority over blacklist # attributeBlacklist: # - "BMI1" # - "BMI2" # - "CLMUL" # - "CMOV" # - "CX16" # - "ERMS" # - "F16C" # - "HTT" # - "LZCNT" # - "MMX" # - "MMXEXT" # - "NX" # - "POPCNT" # - "RDRAND" # - "RDSEED" # - "RDTSCP" # - "SGX" # - "SSE" # - "SSE2" # - "SSE3" # - "SSE4.1" # - "SSE4.2" # - "SSSE3" # attributeWhitelist: # kernel: # kconfigFile: "/path/to/kconfig" # configOpts: # - "NO_HZ" # - "X86" # - "DMI" pci: deviceClassWhitelist: - "0200" - "03" - "12" deviceLabelFields: # - "class" - "vendor" # - "device" # - "subsystem_vendor" # - "subsystem_device" # usb: # deviceClassWhitelist: # - "0e" # - "ef" # - "fe" # - "ff" # deviceLabelFields: # - "class" # - "vendor" # - "device" # custom: # - name: "my.kernel.feature" # matchOn: # - loadedKMod: ["example_kmod1", "example_kmod2"] # - name: "my.pci.feature" # matchOn: # - pciId: # class: ["0200"] # vendor: ["15b3"] # device: ["1014", "1017"] # - pciId : # vendor: ["8086"] # device: ["1000", "1100"] # - name: "my.usb.feature" # matchOn: # - usbId: # class: ["ff"] # vendor: ["03e7"] # device: ["2485"] # - usbId: # class: ["fe"] # vendor: ["1a6e"] # device: ["089a"] # - name: "my.combined.feature" # matchOn: # - pciId: # vendor: ["15b3"] # device: ["1014", "1017"] # loadedKMod : ["vendor_kmod1", "vendor_kmod2"] EOF
Verify NFD is ready.
This operator should say Available in the status
Apply nVidia Cluster Config
We’ll now apply the nvidia cluster config. Please read the nvidia documentation on customizing this if you have your own private repos or specific settings. This will be another process that takes a few minutes to complete.
Apply cluster config
cat <<EOF | oc apply -f - apiVersion: nvidia.com/v1 kind: ClusterPolicy metadata: name: gpu-cluster-policy spec: migManager: enabled: true operator: defaultRuntime: crio initContainer: {} runtimeClass: nvidia deployGFD: true dcgm: enabled: true gfd: {} dcgmExporter: config: name: '' driver: licensingConfig: nlsEnabled: false configMapName: '' certConfig: name: '' kernelModuleConfig: name: '' repoConfig: configMapName: '' virtualTopology: config: '' enabled: true use_ocp_driver_toolkit: true devicePlugin: {} mig: strategy: single validator: plugin: env: - name: WITH_WORKLOAD value: 'true' nodeStatusExporter: enabled: true daemonsets: {} toolkit: enabled: true EOF
Verify Cluster Policy
Login to OpenShift console and browse to operators and make sure you’re in nvidia-gpu-operator namespace. You should see it say State: Ready once everything is complete.
Validate GPU
It may take some time for the nVidia Operator and NFD to completely install and self-identify the machines. These commands can be ran to help validate that everything is running as expected.
Verify NFD can see your GPU(s)
oc describe node | egrep 'Roles|pci-10de' | grep -v master
You should see output like:
Roles: worker feature.node.kubernetes.io/pci-10de.present=true
Verify node labels
You can see the node labels by logging into the OpenShift console -> Compute -> Nodes -> nvidia-worker-southcentralus1-
. You should see a bunch of nvidia GPU labels and the pci-10de device from above. Nvidia SMI tool verification
oc project nvidia-gpu-operator for i in $(oc get pod -lopenshift.driver-toolkit=true --no-headers |awk '{print $1}'); do echo $i; oc exec -it $i -- nvidia-smi ; echo -e '\n' ; done
You should see output that shows the GPUs available on the host such as this example screenshot. (Varies depending on GPU worker type)
Create Pod to run a GPU workload
oc project nvidia-gpu-operator cat <<EOF | oc apply -f - apiVersion: v1 kind: Pod metadata: name: cuda-vector-add spec: restartPolicy: OnFailure containers: - name: cuda-vector-add image: "quay.io/giantswarm/nvidia-gpu-demo:latest" resources: limits: nvidia.com/gpu: 1 nodeSelector: nvidia.com/gpu.present: true EOF
View logs
oc logs cuda-vector-add --tail=-1
Please note, if you get an error “Error from server (BadRequest): container “cuda-vector-add” in pod “cuda-vector-add” is waiting to start: ContainerCreating”, try running “oc delete pod cuda-vector-add” and then re-run the create statement above. I’ve seen issues where if this step is ran before all of the operator consolidation is done it may just sit there.
You should see Output like the following (mary vary depending on GPU):
[Vector addition of 5000 elements] Copy input data from the host memory to the CUDA device CUDA kernel launch with 196 blocks of 256 threads Copy output data from the CUDA device to the host memory Test PASSED Done
If successful, the pod can be deleted
oc delete pod cuda-vector-add